您的位置 >>教师风采 >>校内名师 >>

中考数学五轮复习法

发表日期:2009/11/4 14:18:59 出处:本站 作者:无 有1839位读者读过

中考数学五轮复习法

摘要: 初中数学总复习并不是对以前所教的知识进行简单的回忆和再现。最主要的是要通过对知识系统复习,使每一章节中的各个知识点联系起来,找出其变化规律、性质相似之处及不同点等从而形成完整的知识体系,达到以点成线,以线成面,以面成体的目的,只有这样学生才能把所学的知识融会贯通。本文就如何学习和中考复习数学学科,提高中考质量,探索了几个方面的工作:摸清初中数学内容的脉络,开展基础知识系统复习, 针对热点,抓住弱点,开展难点知识专题复习, 、注重方法,培养能力, 优化复习教学,提高复习效率, 调整学生心态,培养学生兴趣.

关键词:中考复习,能力,效率,兴趣。

 第一轮,摸清初中数学内容的脉络,开展基础知识系统复习。近几年的中考题安排了较大比例(70%以上)的试题来考查双基。全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展。复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应能力。近几年的中考题告诉我们学好课本的重要性。在复习时必须深钻教材,在做题中应注意解题方法的归纳和整理,做到举一反三,有些中考题就在书上的例题和习题的基础上延伸、拓展,因此,教师要引导学生重视基础知识的理解和方法的学习。基础知识就是初中所涉及的概念、公式、公理、定理等,掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。

第二轮,针对热点,抓住弱点,开展难点知识专题复习。根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料,进行专项训练:

(1)   利用数与式解决应用型问题。此类问题主要用来解决储蓄、贷款、税收等实际问题。解决时可以参阅某些关于储蓄、贷款、税收等专业书籍,当某些问题看似玄妙时,不妨列代数式试一试,另一方面掌握相关的公式或会找出各量间的相等关系。
例题 2001,江苏)张大妈参加了2001418中国保监督管理委员会批准的人保理财——金牛投资保障型(3年期)家庭财产保险。她一次投资金2000,投保3年,每年须交保险费12 ,期满后,保险公司从收益金中扣除每年须交的保险费,连同保险投资金张大妈一共能领到2096元,试问:(1)张大妈投保3年期的年收益率是多少 (收益金=投资金×年收益率×保险年数)?
(2)
若张大妈把这2000元存入银行,存期3年,又从经济的角度考虑,请你为张大妈算一算,上述两种投资,哪种更合算(利息=本金×年利率×储存年数。3年期年利率是2.52%,利息税是20%)?
此题中已经给出了公式,只要加以分析就能解决了。但是考试时不一定给出公试 ,所以,平时一定要牢记公试(解法从略)。
(2)
利用方程(组)及不等式(组)解决应用型问题。此类问题主要是考查学生的方程思想,大部分应用题基本都是靠列方程(组)来解决,所以,要求学生一定要熟悉有关计算公式,同时,掌握写出等量关系的常用方法——译式法和列表法;掌握列方程(组)解应用题的常用技巧——逆推求解、整体思考、设参数、利用比例关系等。
例题 2000,江苏)甲乙二人相距8千米,二人同时出发,同向而行,甲2.5小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少?此题的解法,只要熟悉公式s=vt,再通过画图和列表分析,就能轻松解决了(解法从略)。
(3)
利用函数及其图像解决应用问题此类问题主要是考察学生正确识别图表和图像,因此,熟练掌握函数的性质及其图像作法是解决此类问题的关键。值得注意的是在画实际问题中的函数图像时,一定要注意自变量的取值范围。
例题 2001,江苏)某商店试销一种成本单价为100/件的运动服,规定试销时的销售价不低于成本单价,又不高于180/件。经市场调查,发现销售量为y(件)与销售单价x(元/件)之间的关系满足一次函数y=kx+bk ≠0), 共图像如图所示。
1)根据图像,求一次函数y=kx+b的解析式;   
2)当销售单位x在什么范围内取值时,销售 
y不低于80件。
此题着重是要结合实际找出自变量的取值范围,然后据相关的函数关系式进行解答即可(解法从略)。
(4)
几何中的应用型问题。此类问题主要是考查学生正确运用几何知识和三角函数思想解决实际问题的能力,在教材中此类题型较多,通过练习,归纳总结一些基本型,如架管饮水航海问题等。
例题 2004,江苏)建设中的昆明高速公路,在某施工地段沿AC方向开山修路,为加快施工速度,要在山坡的另一边同时施工,如图所示,从AC上的一点B ABC=150度,BD=380 D=60度,那么开挖点ED多远,正好使ACE成一直线?
此题考查了三角函数的特殊值及 直角三角形的性质,只要添加辅助线把图补全,问题就解决了(解法从略)。

第三轮,注重方法,培养能力
 
根据教学大纲在教学中对培养学生能力的要求,中考数学试题内容体现了对运算能力、逻辑思维能力、解决简单实际问题的能力、作图能力、综合运用代数与几何知识及数学思想和方法能力的要求。根据考生实际,还设计一些联系实际问题和开放性、探究性问题的试题,不出繁难的计算题和证明题。
1
、培养运算能力。在中考数学试题中,绝大多数的代数试题、几何试题中的计算题代数几何综合题,都要涉及运算。所以培养学生的运算能力时,不仅要求学生要熟记并掌握运算法则、公式及一定的程序、步骤、技巧,而且要求学生要理解运算的推理过程,让学生能够根据题目寻求合理、简捷的运算途径。最终能够掌握运算题的基本类型及解答各种类型题的一般规律。诸如多年来的考题中的解答题部分——化简和解方程(组)或不等式(组),就是考查学生的就应算能力,难度在0.4—0.7之间,因此,复习时应作重点训练,让各层次的学生都能拿到相应的高分。
2
、培养学生的逻辑思维能力。在中考数学试题中,无论是几何中的证明题,还是几何中的计算题及代数中的解答题,都需要进行必要的逻辑推理,特别是几何中的证明题更为突出,需要根据已知条件和所学过的定义、公理、定理等,按照一定的程序与步骤进行推理,思维不容紊乱。几何证明题是数学中考试题中必不可少的题型,其难度也是在0.4—0.7之间,所以,复习时必须加以强化练习,让各层次的学生都掌握其解题思路及方法。
3
、培养学生解决实际问题的能力。数学知识源于实践又为实践服务,在九年义务教育数学教学大纲中明确指出:要使学生受到把实际问题抽象成数学问题的训练,逐步培养学生分析问题和解决问题的能力形成数学的意识。在近几年的中考数学试题中,考察学生应用数学能力的题目逐年明显增加。  

第四轮,优化复习教学,提高复习效率

1.章节复习——善于转化

  我国著名数学家华罗庚先生指出学习有两个过程,一个是从薄到厚,前者是的积累,后者则是质的飞跃,教师在复习过程中,不仅应该要求学生对所学的知识、典型的例题进行反思,而且还应该重视对学生巩固所学的知识由的飞跃这一转化过程。按常规的方式进行复习,通常是按照课本的顺序把学生学过的知识,如数学概念、法则、公式和性质等原本地复述梳理一遍。这样做学生感到乏味又不易记忆。针对这一情况,我在复习概念时,采用章节知识归类编码法,即先列出所要复习的知识要点,然后归类排队,再用数字编码,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现厚薄间的转化。

  例如,复习直线、线段、射线这一节内容,我把主要知识编码成(1)(2)(3)(4)。(1——一个基础;(2——两个要点;(3——三种延伸;(4——四个异同点。这种复习提纲一提出,学生思维立即活跃,有的在思维,有的在议论,有的在阅读课本,设法寻找提纲的答案,我趁势把知识进行必要的讲解和点拨,其答案如下:(1——一个基础。是指以直线为基本图形,线段和射线是直线上的一部分。(2——两个要点。两点确定一条直线;两条直线相交只有1个交点。(3——三种延伸。三种图形的延伸。直线可以向两方无限延伸;线段不能延伸;射线可以向一方无限延伸。(4)四个异同点。端点个数不同;图形特征不同;表示方法不同;描述的定义不同;事实证明,这种善于转化的复习确实能提高复习效率。

2.例题讲解——善于变化

  复习课例题的选择,应是最有代表性和最能说明问题的典型习题。应能突出重点,反映大纲最主要、最基本的内容和要求。对例题进行分析和解答,发挥例题以点带面的作用,有意识有目的地在例题的基础上作系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变。

  例如,在复习二次函数的内容时,我举了这样一个例题:二次函数的图象经过点(00)与(-1-1),开口向上,且在x轴上截得的线段长为2。求它的解析式。因为二次函数的图象抛物线是轴对称图形,由题意画图后,不难看出(-1-1)是顶点,所以可用二次函数的顶点式y=-a(x+m)2+n,再求得它的解析式(解法略)。在数学中我对例题作了变化,把题例中的条件抛物线在x轴上截得的线段2改成4”,求解析式。变化后,由题意画图可知(-1-1)不再是抛物线的顶点,但从图中看出,图像除了经过已知条件的两个点外,还经过一点(-40),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再对例题进行变化,把题目中的开口向上这一条件去掉,求解析式。再次变化后,此题可有两种情况(i)开口向上;(ii)开口向下;所以有两个结论。

  由于条件的不断变化,使学生不能再套用原题的解题思路,从而改变了学生机械的模仿性,学会分析问题,寻找解决问题的途径,达到了在变化中巩固知识,在运动中寻找规律的目的。从而在知识的纵横联系中,提高了学生灵活解题的能力。

3.解题思路——善于优化

  一题多解有利于引导学生沿着不同的途径去思考问题,可以优化学生思维,因此要将一题多解作为一种解题的方法去训练学生。一题多解可以产生多种解题思路,但在量的基础上还需要考虑质的提高,要对多解比较,找出新颖、独特的最佳解才能成为名副其实的优解思路。在数学复习时,我不仅注意解题的多样性,还重视引导学生分析比较各种解题思路和方法,提炼出最佳解法,从而达到优化复习过程,优化解题思路的目的。如:已知2斤苹果,1斤桔子,4斤梨共价6元,又知4斤苹果,2斤梨,2斤桔子共价4元,现买4斤苹果,2斤桔子,5斤梨应付多少钱?(解题略)本题妙在不具体求出每种水果的单价,而是使用整体解题的思路直接求出答案为8元。又如计算(6x+y/2)(3x-y/4)这是一题多项式的乘法运算,本题从表面上看无规律可找,学生也习惯按多项式系数,发现第一个因式提出公因数2后,恰能构成平方差公式的模型,显然后一种解题思路优于第一种解题的思路。再如,计算若此题把各因式计算后再相乘,很繁琐,若能把各因式逆用平方差公式,再计算、约分,可以迅速地求出结果。

  在复习的过程中加强对解题思路优化的分析和比较,有利于培养学生良好的数学品质和思维发展,能为学生培养严谨、创新的学风打下良好的基础。

4.习题归类——善于类化

  考查同一知识点,可以从不同的角度,采用不同的数学模型,作出多种不同的命题,教师在复习时要善于引导学生将习题归类,集中精力解决同类问题中的本质问题,总结出解这一类问题的方法和规律。例如在复习应用题时,我选下列4个题目作为例题。

  题目1:甲乙两人同时从相距10000的两地相对而行,甲骑自行车每分钟行80,乙骑摩托车每分钟行200,问经过几分钟,甲乙两人相遇?题目2:从东城到西城,汽车需8小时,拖拉机需12小时,两车同时从两地相向而行,几小时可以相遇?题目3:一项工程,甲队单独做需8天,乙队单独做需10天,两队合作需几天完成?题目4:一池水单开甲管8小时可以注满,单开乙管12小时可以完成,两管同时开放,几小时可以注满?

第五轮,调整学生心态,培养学生兴趣 。首先是心理上要调整好心态,不光是学生,老师也是一样。在中考复习时,对学生进行个别心理辅导、群体心理辅导(班会课、专家讲座等),使学生正确对待压力与挫折,正确看待成绩,增强自信,发挥学习的最佳效能。 其次,要避免学生对考试产生畏惧心理,甚至把模拟考试也当成负担。随着复习的深入,数学复习题的深度和广度也会增大,考生一次考试没考好或遇到不懂不会的问题是很正常的,如果一味地着急、焦虑,往往会一无所获,考生应把这些做错的题目和不懂不会的题目当成再次锻炼自己的机会,正确分析问题原因,考前发现问题越多纠正越及时,提高越快。 最后,教师要适时给予学生学法指导,培养学生兴趣。教师要从讲课复习、做练习(试题)、改正试卷、小结等等方面,对学生进行学法指导,使学生在学习的每个环节上量力而行,合理利用时间,发挥学习效能。使学生学习得法,增强自信,培养兴趣,做到事半功倍。

目前,中考复习资料发行的套数很多,所以,教师可以结合实情,选择某套含金量较高的资料作为参考组织复习。总之,教书育人,教无定法,复习也无定法,但是,只要每位教育者都忠诚于国家的教育事业,怀有为国家教育事业贡献毕生精力的精神和愿望,强化教书育人的意识,积极探索教学规律,并着眼于教育教学质量的提高为出发点,我相信,最终一定会是棋开得胜,如我所愿。

 

参考文献
[1]
、邓宗福和吴晓燕著:《中考数学专项练习》,北京,中国人民大学出版社出版,2005年,第3页至第6页和第165页。
[2]
、《初中几何教材》,2003年,第27页。
[3]
1998年至2004年的江苏省中考试卷。